An introduction to LATEX Sample Article

Lazaros Moysis+*
AUTH

 $^{^*}$ Every student participating in this workshop contributes to the creation of this article.

Contents

1	First section: Preliminaries		
2	Second section: Mathematics		
	2.1 Calculus	_	
	2.2 Algebra	3	
3	Third section: Debugging, Bibliography, Greek text	4	

Abstract

This is a simple introduction to LaTeX. This class is separated into 3 sections. Each section is presented in detail. Examples are given for all commands. Every student is expected to be able to write this document by the end of the seminar.

1 First section: Preliminaries

In the *first section* we shall give details regarding the installation of LATEX. We will also cover basic text formatting.

Step 1 Show how to install LATEX.

Step 2 Cover all the basic principles of text formating.

2 Second section: Mathematics

2.1 Calculus

Definition 2.1.1. In first-year calculus courses, we defined intervals such as (a, b) and (a, ∞) . Such an interval is a *neighborhood* of u if u is in the interval. Students should not be confused by ∞ . It is a symbol, not a number.

Definition 2.1.2. A function f(t) is differentiable at a point a if the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \tag{2.1.1}$$

П

exists. Then, the limit (2.1.1) is denoted by f'(a) and is called the *derivative* of f at point a.

Example 2.1.1. Let $f(t) = t^2$. Then

$$f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

$$= \lim_{h \to 0} \frac{(t+h)^2 - t^2}{h}$$

$$= \lim_{h \to 0} \frac{2ht + h^2}{h}$$

$$= \lim_{h \to 0} (2t+h)$$

$$= 2t$$

Below is a table of the basic properties of the Laplace Transform.

Property	f(t)	F(s)
Definition	f(t)	$\int_{0}^{\infty} f(t)e^{-st}dt$
Inverse	$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s)e^{-st}ds$	F(s)
Linearity	$c_1 f_1(t) + c_2 f_2(t)$	$c_1F_1(s) + c_2F_2(s)$

2.2 Algebra

Theorem 2.2.1. There are infinitely many prime numbers.

Proof. Start by assuming that the set of all primes is finite. The result will contradict this assumption.

Theorem 2.2.2. Let A be an $n \times n$ matrix. Then, A is invertible iff det $A \neq 0$. In this case

$$\det(A^{-1}) = \frac{1}{\det A}$$

3

Definition 2.2.1. Let A be an $n \times n$ matrix

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
 (2.2.1)

Its characteristic polynomial is defined as

$$p(\lambda) = \det(\lambda I - A) \tag{2.2.2}$$

Theorem 2.2.3. Every matrix A satisfies its characteristic polynomial (2.2.2), i.e. p(A) = 0

Theorem 2.2.3 is known as the Cayley-Hamilton Theorem and is one of the most important theorems in matrix algebra.

Lemma 2.2.1. The power of a 3×3 matrix as shown below is given by

$$\begin{bmatrix} x & 1 & 0 \\ 0 & x & 1 \\ 0 & 0 & x \end{bmatrix}^n = \begin{bmatrix} x^n & \binom{n}{1}x^{n-1} & \binom{n}{2}x^{n-2} \\ 0 & x^n & \binom{n}{1}x^{n-1} \\ 0 & 0 & x^n \end{bmatrix}$$
(2.2.3)

A great book summarising matrix facts is The Matrix Cookbook

3 Third section: Debugging, Bibliography, Greek text

In the *last section*, we will spend time discussing code errors.

Then we will give two methods for creating the bibliography:

- 1. Inside the text using \beginthebibliography.
- 2. Using Bibtex.

Lastly, we will see how we can type text in greek characters.