An introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ Sample Article

Lazaros Moysis+* AUTH

[^0]
Contents

1 First section: Preliminaries 3
2 Second section: Mathematics 3
2.1 Calculus . 3
2.2 Algebra . 3

3 Third section: Debugging, Bibliography, Greek text 4

Abstract

This is a simple introduction to $\mathbf{E}^{\mathbf{A}} \mathbf{T}_{\mathbf{E}} \mathbf{X}$. This class is separated into 3 sections. Each section is presented in detail. Examples are given for all commands. Every student is expected to be able to write this document by the end of the seminar.

1 First section: Preliminaries

In the first section we shall give details regarding the installation of $\mathrm{IT}_{\mathrm{E}} \mathrm{X}$. We will also cover basic text formatting.

Step 1 Show how to install $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$.
Step 2 Cover all the basic principles of text formating.

2 Second section: Mathematics

2.1 Calculus

Definition 2.1.1. In first-year calculus courses, we defined intervals such as (a, b) and (a, ∞). Such an interval is a neighborhood of u if u is in the interval. Students should not be confused by ∞. It is a symbol, not a number.

Definition 2.1.2. [6] A function $f(t)$ is differentiable at a point a if the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \tag{2.1.1}
\end{equation*}
$$

exists. Then, the limit (2.1.1) is denoted by $f^{\prime}(a)$ and is called the derivative of f at point a.
Example 2.1.1. Let $f(t)=t^{2}$. Then

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(t+h)^{2}-t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h t+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2 t+h) \\
& =2 t
\end{aligned}
$$

Below is a table of the basic properties of the Laplace Transform.

Property	$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
Definition	$\mathrm{f}(\mathrm{t})$	$\int_{0}^{\infty} f(t) e^{-s t} d t$
Inverse	$\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} F(s) e^{-s t} d s$	$\mathrm{~F}(\mathrm{~s})$
Linearity	$c_{1} f_{1}(t)+c_{2} f_{2}(t)$	$c_{1} F_{1}(s)+c_{2} F_{2}(s)$

2.2 Algebra

Theorem 2.2.1. There are infinitely many prime numbers.
Proof. Start by assuming that the set of all primes is finite. The result will contradict this assumption.

Theorem 2.2.2. [5] Let A be an $n \times n$ matrix. Then, A is invertible iff $\operatorname{det} A \neq 0$. In this case

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det} A}
$$

Definition 2.2.1. [5] Let A be an $n \times n$ matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \tag{2.2.1}\\
\vdots & \vdots & \vdots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

Its characteristic polynomial is defined as

$$
\begin{equation*}
p(\lambda)=\operatorname{det}(\lambda I-A) \tag{2.2.2}
\end{equation*}
$$

Theorem 2.2.3. [5] Every matrix A satisfies its characteristic polynomial (2.2.2), i.e. $p(A)=0$
Theorem 2.2.3 is known as the Cayley-Hamilton Theorem and is one of the most important theorems in matrix algebra.
Lemma 2.2.1. [5] The power of a 3×3 matrix as shown below is given by

$$
\left[\begin{array}{lll}
x & 1 & 0 \tag{2.2.3}\\
0 & x & 1 \\
0 & 0 & x
\end{array}\right]^{n}=\left[\begin{array}{ccc}
x^{n} & \binom{n}{1} x^{n-1} & \binom{n}{2} x^{n-2} \\
0 & x^{n} & \binom{n}{1} x^{n-1} \\
0 & 0 & x^{n}
\end{array}\right]
$$

A great book summarising matrix facts is The Matrix Cookbook
A matrix $\mathrm{T}(\mathrm{s})$ whose elements are polynomials is called a polynomial matrix. Let q be the highest degree among the degrees of the polynomial entries of $\mathrm{T}(\mathrm{s})$. Then we can write $\mathrm{T}(\mathrm{s})$ as

$$
\begin{equation*}
T(s)=T_{q} s^{q}+T_{q-1} s^{q-1}+\cdots+T_{1} s+T_{0} \tag{2.2.4}
\end{equation*}
$$

The number q is often called the lag of the matrix.
Example 2.2.1. Let $T(s)$ be

$$
T(s)=\left(\begin{array}{cc}
s^{2}+1 & 3 \\
s & s^{2}+2 s
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) s^{2}+\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right) s+\left(\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right)
$$

Obviously $\mathrm{T}(\mathrm{s})$ is in the form of (2.2.4), with

$$
T_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad T_{1}=\left(\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right) \quad T_{0}=\left(\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right)
$$

3 Third section: Debugging, Bibliography, Greek text

In the last section, we will spend time discussing code errors.
Then we will give two methods for creating the bibliography:

1. Inside the text using \backslash begin $\{$ thebibliography $\}$.
2. Using Bibtex.

Lastly, we will see how we can type text in greek characters.

References

[1] Tobias Oetiker Hubert Partl, Irene Hyna and Elisabeth Schlegl, The not so short introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} 2_{\varepsilon}, \mathrm{V} .5 .01,2011$.
[2] The ${ }^{A} T_{E} X W i k i b o o k$.
[3] Stefan M. Moser, How to Typeset Equations in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, version 4.2.
[4] EGSA, Dept. of Economics, University of North Carolina, Text Formatting with LATEX, a tutorial.Academic and Research Computing, April 2007.
[5] Dennis S. Bernstein, Matrix mathematics. Theory, facts, and formulas. 2nd expanded ed., Princeton University Press 2009.
[6] Michael Spivak, Calculus, 2nd edition, Cambridge University Press 1980.
[7] A.I.G. Vardulakis, Linear multivariable control - Algebraic analysis and synthesis methods, John Wiley \& Sons, New York 1991.

[^0]: *Every student participating in this workshop contributes to the creation of this article.

