$\mathbb{A}_{T_{E}} X$ exam

Name Surname

Contents

1	Algebra													ļ	5														
	1.1	Matrix Theory												•			•							•	•		•		5

CONTENTS

4

Chapter 1

Algebra

1.1 Matrix Theory

Theorem 1.1.1. [1] Let A be an $n \times n$ matrix. Then, A is invertible iff det $A \neq 0$. In this case

$$\det(A^{-1}) = \frac{1}{\det A}$$

Definition 1.1.1. [1] Let A be an $n \times n$ matrix

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$
(1.1)

Its characteristic polynomial is defined as

$$p(\lambda) = det(\lambda I - A) \tag{1.2}$$

Theorem 1.1.2. For every square matrix A, and its characteristic polynomial $p(\lambda)$, as defined in 1.2, it holds

$$p(A) = 0$$

Proof.

$$p(A) = det(A * I - A) = det(0_n) = 0$$

Bibliography

[1] Dennis S. Bernstein, Matrix mathematics. Theory, facts, and formulas. 2nd expanded ed., Princeton University Press 2009.