

River Water Quality

Section **2b**: Hydrology & Ecology of Running Waters Prof. Maria Lazaridou School of Biology

License

- The educational material subjects to Creative Commons licensing.
- For the educational material, like images, that subjects to other form of licensing, the license is explicitly referred.

University of

River Water Quality School of Biology

Funding

- This educational material has been developed as part of the educational work of the teacher.
- The project "Open Academic Courses at Aristotle University of Thessaloniki" has only fund the remodeling of educational material.
- The project is implemented under the Operational Program "Education and Lifelong Learning" and cofunded by the European Union (European Social Fund) and national resources.

River Water Quality

School of Biology

Hydrology & Ecology of Running Waters

River Hydro-morphology

Section Contents

- 1. Water flow in a stream
- 2. Stream Water Discharge
- 3. Transport of Material
- 4. Stream Profiles
- 5. Sinuosity
- 6. Bars, Riffles & Pools
- 7. Floodplain

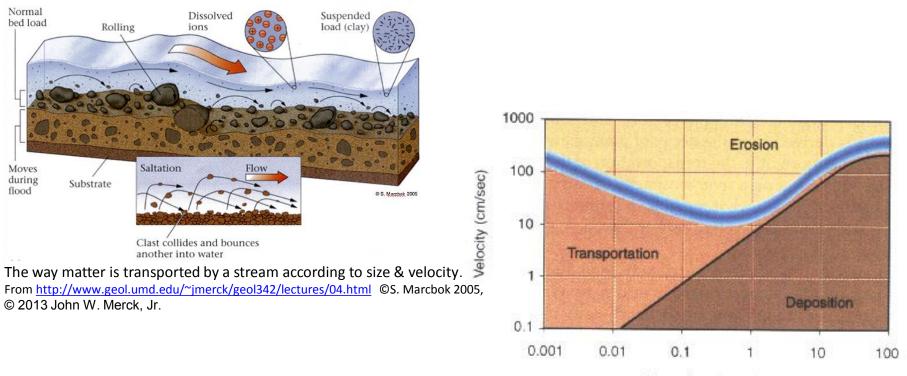
Thessalonik

Water flow in a stream

- Rivers represent the excess of rainfall onto land areas [Precipitation Evaporation (70% Precipitation) – infiltration to groundwater] which flows via channels to the sea.
- 2 types of water flow:
 - ✓ <u>Laminar flow</u> occurs when water is moving very slowly. All water units flow parallel at the same speed
 - ✓ <u>Turbulent flow</u> occurs when the velocity is increased. Most usual pattern of flow, characterized by instability, with neighboring units of water moving in different directions & with different velocities
- Velocity affects the nature of substrate & the biota. The current velocity varies within a stream's cross section due to friction, sinuosity & obstructions. Higher velocity is measured near the surface & the center of a stream, & decreases as a function of depth

Stream Water Discharge

- Is the volume of water passing a given point during a given period of time (m³/sec)
- Depends on channel width, depth & water velocity. Increases when a river receives water from its tributaries
- Discharge controls water chemistry (through dilution) & is related to the transport of suspended sediment
- Long-term monthly discharges characterize the regime of a river. The plot of discharge through time is called "hydrograph"



Transport of Material

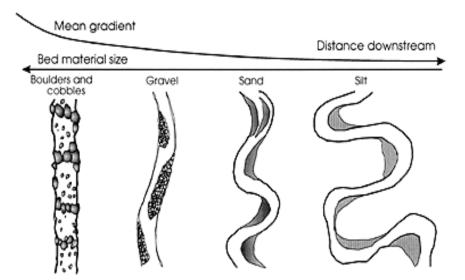
- Transportation in 3 states:
 - Dissolved Matter amount of material transported in dissolved load (subsurface flow). Solutes derive from chemical weathering of bedrock & soil
 - Suspended Solids particles (<0.06 mm) in suspension depending on stream velocity. Solids derive from erosion of slopes, stream channel & ban
 - ✓ Bed Load coarser sized fragments that cannot be in suspension. Particles moving by traction (rolling, sliding & skipping) along the channel bed
- The amount transported as solid or in suspension depends on basin characteristics, lithology & hydrologic pathways
- Stream competence The size of the particle that can be eroded & transported is a function of current <u>velocity</u>
- Entrainment the incorporation of particles when stream velocity exceeds the entraining <u>velocity</u> for a particular particle size
- Deposition occurs when stream competence falls below a given <u>velocity</u> for a particular particle size

Transport of Material

Size of particles (mm)

The effect of velocity in the transport of material relatively to their size. From <u>http://www.geol.umd.edu/~piccoli/100/CH12.htm</u>, © 2013 Phil Piccoli

University of


Thessaloniki

River Water Quality School of Biology

Stream Profiles

- Unlimited variations- Generally a fast-flowing, turbulent mountain stream with the addition of tributaries results in a large & smoothly flowing river that winds through the lowlands to the sea
- Biological variables correlate with stream size & distance downstream
- Substrate also affects the type of fauna:

Group	Preferred Substrate
Lithophilous	Gravel, Cobbles, Boulders
Psammophilous	Sand
Xylophilous	Wood
Phytophilous	Plants

Substrate variability with distance downstream. At the headwaters the gradient is steep resulting downstream in a concave longitudinal

profile. From: http://shorelandmanagement.org/depth/rivers/04.html

Sediment Transport. Adapted from Church, M. 1992. Channel Morphology and Typology. Chapter 6 in The River Handbook, vol. 1, P. Calow and G.E. Petts, eds. pp. 130, 136.

River Water Quality

School of Biology

Sinuosity

- Is the course a flowing water will follow
- It is measured with the Sinuosity Index – SI:
- ✓ The ratio of channel distance to down valley distance. Values range from 1 (simple, well-defined channels) 4 (highly meandering channels)
- Stream flow creates distinctive landforms composed of straight, meandering & braided channels, channel networks, & flood plains
- **Meandering** is the natural tendency for alluvial channels (SI > 1.5)

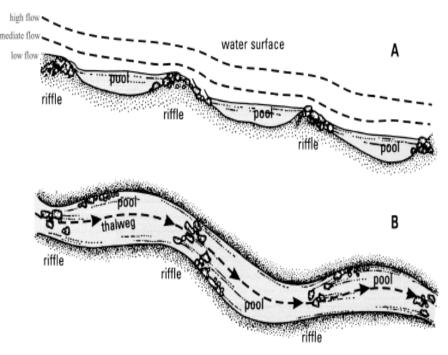


Foto aerial de el Rio Cauto acerca de Guamo Embarcadero, Cuba. From: <u>http://en.wikipedia.org/wiki/File:Rio-cauto-cuba.JPG</u>. By Urdangaray, No rights reserved

Bars, Riffles & Pools

- Within a stream channel 3 characteristic areas can be found: riffles, pools & runs
 - ✓<u>Riffle</u>: shallow channel, with high velocity & turbulent flow. Turbuler surface & coarse substrate
 - ✓<u>Pool</u>: a deeper channel, with low water velocity &turbulence. Fine substrate & not turbulent surface
 - ✓<u>Run</u>: Deep channel with fast but not turbulent flow. The substrate lacks fine deposits.

Formation of riffles & pools. From: <u>http://www.chesco.org/index.aspx?NID=2118</u> Adapted from North Carolina Cooperative Extension Service, 1999

Floodplain

- Stream channels through their course influence the shape of the valley
- Floodplain is the self-adjusted flat area near the stream. Is the valley floor prone to periodic inundation during over-bank discharges
- Flooding is a regular & natural behavior of the stream. It is usually accompanied by disasters in urban areas near river shores.

