

River Water Quality

Section **3c**: Anthropogenic Influence on Running water Hydromorphology & Water Quality Prof. Maria Lazaridou School of Biology

License

- The educational material subjects to Creative Commons licensing.
- For the educational material, like images, that subjects to other form of licensing, the license is explicitly referred.

University of

River Water Quality School of Biology

Funding

- This educational material has been developed as part of the educational work of the teacher.
- The project "Open Academic Courses at Aristotle University of Thessaloniki" has only fund the remodeling of educational material.
- The project is implemented under the Operational Program "Education and Lifelong Learning" and cofunded by the European Union (European Social Fund) and national resources.

River Water Quality

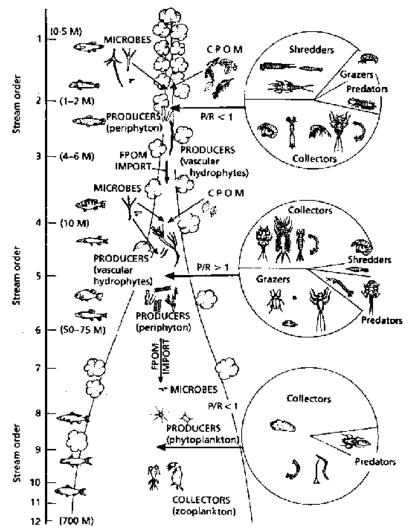
School of Biology

Anthropogenic Influence on Running water Hydromorphology & Water Quality

Other Anthropogenic Stresses Dams & Canals

Section Contents

- 1. Dams & River Continuum Concept
- 2. Impact of River Regulation by Dams
- 3. Interruption of the River Continuum
- 4. Downstream Impacts of Reservoirs
- 5. Canalization & Channelization


- The River Continuum Concept (Vannote *et al.* 1980) is a theory that describes a river ecosystem, fully, from its source to its mouth.
- The physical base is the river size & its localisation along the gradient (stream to large river). The order, the flow rate & the (sub-) catchment area are the physical measurement along the continuum
- Biological adaptations & changes in the biological communities, observed from the head waters to the mouth of the river, can be predictable to a certain extent
- Sources of energy vary along the continuum (autochnonousallochtonous food sources)

General Description of the relationship between the size of rivers, energy inputs & biocenosis along the continuum (Vannote *et al.* 1980)

- <u>Headwaters</u> external inputs of coarse particulate organic matter (CPOM) constitute a food resource for numerous organisms (Primary Production/Respiration, P/R<1)
- <u>Middle River course</u> broadened river, CPOM abundance decreases & fine particulate organic matter (FPOM) increases, peryphyton development
- <u>Downstream</u> , macrophytes grow, and phytoplankton develops, autotrophic status, (P/R>1)

- RCC general concept/ norm that was developed on the basis of observations of unaltered watercourses of temperate regions. Aids the distinction between ecosystem types
- The changes during the course affect benthic consumer communities & ecosystem functioning
- No clear distinction between herbivores, carnivores, detritivores – depends on developmental life stage – most are polyphagous
- Preferable distinction between grazer, shredders, collectors, & predators depends on availability of food particles & food size

Table for a typical classification of macroinvertebrates on the basis of their feeding mode

Feeding mode	Food sources	Examples
Fragmentor – shredder	CPOM (Coarse particulate organic matter) non lignous and associated microbiota	Trichoptera (Limnephilidae, Lepidostomatidae, Sericostomatidae), Crustaceans (Asellidae, Gammaridae), Plecoptera (Nemuridae, Leuctridae), Diptera (Tipulidae, Chironomidae)
Shredder-gouger	CPOM Wood particles & assosiated microbiota	Diptera, Coleoptera, Trichoptera
Filterer-collector	FPOM (Fine particulate organic matter) and associated microbiota	Diptera (Simulidae), Trichoptera (Hydropsychidae, Oligoplectrum)
Collector-gatherer	FPOM & assosiated microbiota	Ephemeroptera, Diptera (Chironomidae, Ceratopogonidae), Coleoptera(Elmidae), Trichoptera(Sericostomatidae).
Predator	Animal preys	Odonata, Megaloptera, Trichoptera, Hirudinae, Plathelminthes, Coleoptera,
Piercer	Macrophytes	Trichoptera (Hydroptilidae)
Grazer	Periphyton & biofilm	Gasteropoda (Ancylus sp., Theodoxus sp.), Plecoptera (Taenopterigidae, Ceptophlebiidae), Ephemeroptera(Heptageniidae), Trichoptera(Glossomatidae,),

University of

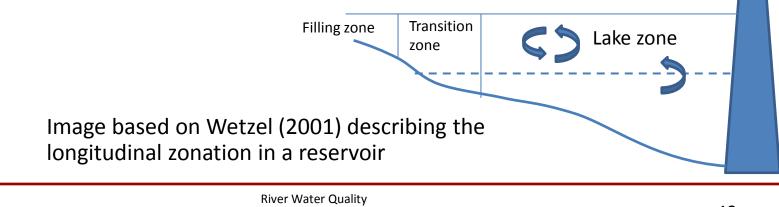
River Water Quality

School of Biology

- Human activities alter the RCC properties & reduce the model predictability
- Multiplication of dams/reservoirs on watercourses makes hazardous the validity of such schemes strictly based on hydrological continuity (Testard *et al.* 1995)
- Alterations on river beds, water course, stream flow, siltation,
 D.O. etc. affect directly structure and distribution of macroinvertebrate communities

Impact of River Regulation by Dams

- 2/3 of freshwater courses running out to the oceans are slowed down by big (h>15 m) or small dams for exploitation
- Scientists interest original focus was on potential impacts these dams could have on the rivers that feed them instead of reservoir limnology
- Even though dams are beneficial for mankind (energy, irrigation, potable water, fool control) have several negative impacts on river ecosystem & biota



Interruption of the River Continuum

- A dam on a river causes the replacement of running water benthic fauna with lacustrine fauna
- Distinction in 3 zones:

Universitv o

- ✓ <u>Filling zone</u>: high turbidity, low primary production, high (aerobic) decomposition rates, inputs of allochtonous organic matter
- ✓ <u>Transition zone</u>: decreased flow rates, high sedimentation & high water transparency, adequate conditions for phytoplankton growth
- <u>Lacustrine zone</u>: characteristics simillar to lakes, plankton production, nutrient limitation, sedimentation of organic matter & decomposition in the hypolimnium

School of Biology

Interruption of the River Continuum

- Water level variation prevents the growth of a stable plant girdle & modifies the habitat (survival) of macroinvertebrates in the reservoir.
- Reservoirs act like nutrient traps → increase of the production and of the organic load can induce anoxia in the hypolimnium along with the adduct features
- Suspended particles transported downstream sink in the reservoir leading to its progressive filling (reduction of the storage capacity) and fixation of allochtonous organic matter (Cortes *et al.* 1998). Plankton growth (N-fixing cyanobacteria) can increase the nitrate flow downstream

Downstream Impacts of Reservoirs

- Hydraulic regime & temperature are the 2 most altered parameters in downstream dams (Cereghino & Lavandier, 1998)
- Residence time affects downstream water quality & chemistry (especially if dam releases come from hypolimnium)
- Chemical elements, usually: temperature, pH, conductivity, Nitrogen (in all forms) & Phosphorus are affected in most cases
- Variation in alterations can be observed depending on the use of the dam (electric production, agricultural, flood control)
- Seasonal variations (temperature & flow) are reduced in most cases
- The dam type & management strongly influence the inducted
 effects

Downstream Impacts of Reservoirs

- In low water flow & upstream alteration, the relations between the river and its flood areas are suppressed [reduced productivity in both habitats (Allan, 1995)]
- In cases of increased transparency, productivity rises (periphyton & macrophytes)
- In cases of lockfalls (electricity production) the river bank erodes, which usually eradicates edge plants & affects greatly macroinvertebrate communities (abundance & biodiversity) in response with each species sensitivities (changes competition, alters food sourceavailability, fluctuate hydraulic regimes with occasional daily flow rate variation)
- Migration of fish is blocked. Some salmon & eels populations are totally eliminated affecting upstream & downstream biota

Canalization & Channelization

- <u>Channelization</u> improvement of the flow of the river, particularly in flood conditions by modifying its course so that it follows a restricted path
- <u>Canalization</u> the hold of the flow (navigation & power generation) by introducing weirs & locks to a river so as to secure a defined depth despite seasonal variation & up/down-stream morphology
- Obstruction removal increases channel discharging capacity & lowers the height of floods upstream
- Reduction of the channel's length (straight cuts instead of a winding course) can increase the effective fall (in large rivers can be temporary)

Allan J.D. 1995: Stream Ecology. Chapman & Hall, London.

- Anderson, D. & Mendenhall. V.T. 1978: A survey of tomatoes home-canned in Utah. Jn. Food Protection 41:514.
- Axelman J., Broman D., Näf, C. 1997: Field measurements of PCB partitioning between water and planktonic organisms:
- Influence of growth, particle size, and solute-solvent interactions. Environ Sci Technol 31 (3), pp 665-669
- Baxter R.M. 1977: Environmental effects of Dams and Impoundments. Annual Review of Ecology and Systematics (8), pp. 225-283
- Berglund, O., Larsson, P., Ewald, G., Okla, L. 2001: The effect of lake trophy on lipid content and pcb concentrations in planktonic food webs. Chemical Ecology and Ecotoxicology, 82 (4) pp. 1078–1088
- Brittain, J.E., & Salveit, S.J. 1989: A review of the effect of river regulation on mayflies (Ephemeroptera). Regulated Rivers: Research and Management 3 (1), pp. 191-204
- Campfens, J., & Mackay, D. 1997: Fugacity-based model of PCB bioaccumulation in complex aquatic food webs. Environ. Sci. Technol. 31 (2), pp. 557-583
- Chen, H.M., Zheng, C.R., Tu, C., Shen, Z.G. Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere, 2000, 41 (1-2), pp. 229-234
- Clayton, J. R., Pavlou, S. P., Breitner, N. F. 1977: Polychlorinated biphenyls in coastal marine zooplankton: bioaccumulation by equilibrium partitioning colonizing artificial substrates in a large impounded river. Environ. Sci. Technol., 11 (7), pp. 676–682
- Cortes, R.M.V., Ferreira, M.T., Oliveira, S.V., Godinho, F. 1998: Contrasting impact of small dams on the macroinvertebrates of two Iberian mountain rivers. Hydrobiologia, 389 (1-3), pp.51-61
- Crompton T. R. 1997: Toxicants in the Aqueous Ecosystem, Toxicants in the Aqueous Ecosystem John Wiley & Sons, Inc., New York, 1997

Cırıghino, R. & Lavandier, P. 1998. Influence of hydropeaking on the distribution and larval development of the Plecoptera from a mountain stream. Regul. Rivers: Res. Mgmt.14 (3), pp. 297-309

University of

hessalonik

- Dachs, J., Eisenreich, S.J., Hoff, R.M. 2000: Influence of eutrophication on air-water exchange, vertical fluxes and phytoplankton concentrations of persistent organic pollutants. Environ Sci Technol, 34 (6), pp. 1095–1102
- Del Vento, S., & Dachs, J. 2002: Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environ. Toxicol. Chem. 21 (10), pp. 2099-2107
- Delbeke, K., & Joiris, C. 1988: Accumulation mechanisms and geographical distribution of PCBs in the North Sea, Oceanis, 14 (4), pp. 399-410
- Englund, G. & Malmqvist, B. 1996: Effects of flow regulation, habitat area and isolation on the macroinvertebrate fauna of rapids in north Swedish rivers. Regul. Rivers : Res. Mgmt, 12(4-5), pp. 433-445
- Fisher, N. S., Burns, K. A., Cherry, R. D., Heyraud, M. 1983: Accumulation and cellular distributions of 241Am, 210Po, and 210Pb in two marine algae. Mar. Ecol. Prog. Ser., 11, pp. 233-237
- Fisk, A.T., Stern, A.G., Hobson, K.A., Strachan, W.J., Loewen D.M., Norstrom, R.J. 2001: Persistent Organic Pollutants (POPs) in a Small, Herbivorous, Arctic Marine Zooplankton (Calanus hyperboreus): Trends from April to July and the Influence of Lipids and Trophic Transfer. <u>Marine Pollution Bulletin</u>, 43 (1-6), pp. 93-101
- Fruget, J.F., Dessaix, J., Plenet, S. 1996: Macroinvertebrate communities of Doubs River prior to completion of the Rhine-Rhone connection. Regulated Rivers: Research and Management, 12 (6), pp. 617-631
- Hargrave, B.T., Phillips, G.A., Vass, W.P., Bruecker, P., Welch, H.E., Siferd, T.D. 2000: Seasonality in bioaccumulation of organochlorines in lower trophic level Arctic marine biota. Environmental Science and Technology, 34 (6), pp. 980–987
- Hobbs, D. F. 1948: Trout fisheries in New Zealand, their development and management. New Zealand Marine Department, Fisheries Bulletin 9, Wellington, New Zealand.

- Hoekstra, P.F., O'Hara, T.M., Teixeira, C., Backus, S., Fisk, A.T., Muir, D.C.G., 2002: Spatial trends and bioaccumulation of organochlorine pollutants in marine zooplankton from the Alaskan and western Canadian Arctic. Environ. Toxicol. Chem. 21 (3), pp. 575-583
- Hynes, H.B.N. 1971: The Ecology of Running Waters. Toronto: University of Toronto Press,
- Kilgore, D.L. Jr. & Armitage, K. 1978: Energetics of yellowbellied marmot populations. Ecology, 59, pp. 78-88
- Kujawinski, E.B., Farrington, J.W., Mofett, J.W. 2000: Importance of passive diffusion in the uptake of polychlorinated biphenyls by phagotrophic protozoa. Appl Environ Microbiol., 66 (5), pp. 1987-1993
- Lauters, F., Lavender, P., Lim, P., Sabaton, C., Belaud. A. 1996: Influence of hydropeaking on invertebrates and their relationship with fish feeding habits in a Pyrenean River. Regulated Rivers: Res. and Management, 12 (6), pp. 563-573
- Manahan. S.E. 1994: Environmental chemistry (6th ed.), CRC Press, Boca Raton, FL p. 196
- Mason C.F. 1996: Biology of freshwater pollution. 3rd ed. Longman Singapore Publishers, Singapore
- Minshall, G.W., Cummins, K.W., Peterson, R.C., Cushing, C.E., Bruns, D.A., Sedell, J.R., Vannote, R. L. 1983:
 - Developments in stream ecosyatem theory. Can. J. Fish Aquat. Sci. 42, pp. 1045-1055
- Munger, C., & Hare, L. 1997: Relative importance of water and food as cadmium sources to an aquatic insect (Chaoborus punctipennis): Implications for predicting Cd bioaccumulation in nature. Environ. Sci. Technol, 31 (3), pp. 891–895
- Nehlsen, W., Williams, J.E., Linchatowich, J.A. 1991: Pacific salmon at the cross-roads: Stocks at risk from California, Oregon, Idaho and Washington, Fisheries16 (2), pp.4-21
- Pardo, I., Campell, I. C., Brittain, J.E. 1998: Influence of dam operation on mayfly assemblage structure and life histories in two southeastern Australian streams. Res. Manag.14 (3), pp 285-295

University of

- Pickhardt, P.C., Folt, C.L., Chen, C.Y., Klaue, B., Blum, J.D. 2002: Algal Blooms Reduce the Uptake of Toxic Methylmercury in Freshwater Food Webs. Proceedings of the National Academy of Sciences of the United States of America, 99 (7), pp. 4419-4423
- Pozo, J., Orive, E., Fraile, H., Basaguren, A. 1997: Effects of the Cernadilla-Valparaiso reservoir system on the river Tera. Regulated Rivers: Research and Management, 13 (1), pp. 57-73
- Scullion, J., & Sinton, A. 1983: Effects of artificial freshets on substratum composition, benthic fauna and invertebrate drift in two impounded rivers in mid-Wales. Hydrobiologia, 107, pp. 261-269
- Skoglund, R.S., Stange, K., Swackhamer, D.L. 1996: A kinetic model for predicting the accumulation of PCBs in phytoplankton. Environ Sci Technol. 30 (7), pp. 2113–2120
- Strange, K. & Swackhamer, D.L. 1994: Factors affecting phytoplankton species-specific differences in accumulation of 40 polychlorinated biphenyls (PCBs). Environmental Toxicol. and Chem. 13 (11), pp. 1849-1860
- Testard, P. 1995: Role of littoral macrophytes in the functioning of lakeside ecosystems. In R. Pourriot and M. Meybeck [eds.], Limnologie générale. Masson. [In French.]
- Troelstrup, N. H. Jr., & Hergenrader. G. L. 1990: Effect of hydropower peaking flow fluctuations on community structure and feeding guilds of invertebrates. Hydrobiologia 199, pp. 217-228
- Twining, B.S. & Fisher. N.S. 2004: Trophic transfer of trace metals from protozoa to mesozooplankton. Limnology and Oceanography, 49 (1), pp. 39
- Vannote, R. L. Mnshall, G.W., Cummins, K.W., Sedell, J.R., Cushing, C.E. 1980: The river continuum concept. Canadian journal of fisheries and aquatic sciences, 37, pp. 130-137
- Wallberg. P. & Andersson, A. 2000: Transfer of carbon and polychlorinated biphenyl through the pelagic microbial food web in a coastal ecosystem. Environ Toxicol Chem, 19 (4), pp. 827-835

Wetzel, R.G. 2001: Limnology : Lake and river ecosystems. Third Ed.Academic Press, SanDiego

University o

End of Section 3

Processing: Latinopoulos Dionissis

Thessaloniki, Thessaloniki, Winter Semester 2013-2014

