

River Water Quality

Section **1**: Water Framework Directive Prof. Maria Lazaridou School of Biology

License

- The educational material subjects to Creative Commons licensing.
- For the educational material, like images, that subjects to other form of licensing, the license is explicitly referred.

University of

River Water Quality School of Biology

Funding

- This educational material has been developed as part of the educational work of the teacher.
- The project "Open Academic Courses at Aristotle University of Thessaloniki" has only fund the remodeling of educational material.
- The project is implemented under the Operational Program "Education and Lifelong Learning" and cofunded by the European Union (European Social Fund) and national resources.

River Water Quality

The Water Framework Directive 2000/60/EC (WFD)

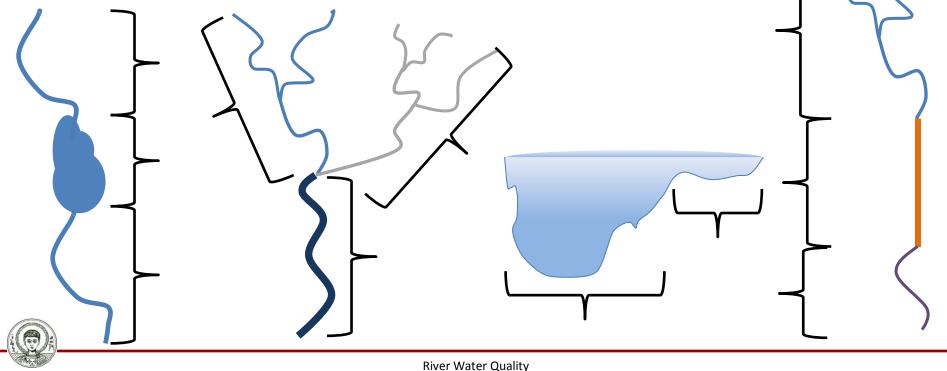
WFD Characterization-Typology-Classification

Section Contents

- 1. Characterization of Water Body types
- 2. Typology
- 3. Reference Conditions
- 4. Classification of Ecological Status
- 5. Presentation of monitoring results
- 6. Chemical status
- 7. Commentary

Characterization of Water Body Types

- Identify location & boundaries of bodies of surface water
- Categorize into surface water category:
 - ✓ rivers, lakes, transitional waters or coastal waters AND
 - As natural, protected, artificial or heavily modified surface water bodies
- For each category, the surface water bodies within the river basin shall be differentiated according to types using "System A" or "B"
- System A: differentiated by the relevant ecoregions & then differentiated according to <u>obligatory</u> classified ranged descriptors
- System B: differentiated into types using A's <u>obligatory</u> & <u>optional</u> descriptors, as are required to ensure that type specific biological reference conditions can be reliably derived. It must achieve at least the same degree of differentiation.



Universitv o

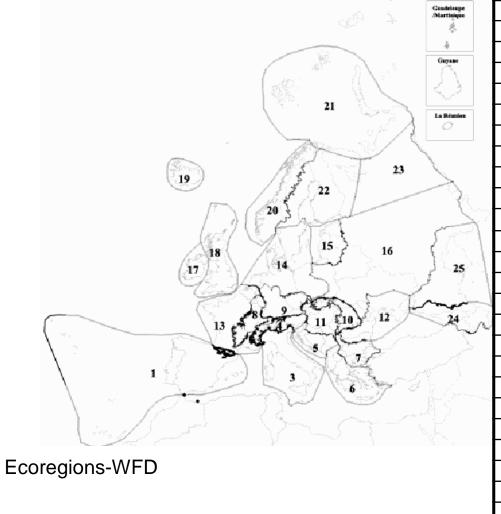
Characterization of Water Body Types

Defining water Bodies

- ✓ By its natural characteristics
- ✓ & by evaluating analyzing the pressures and impacts

Aristotle University of Thessaloniki River Water Quality

Why is typology necessary?


- To group sites with similar biology in human disturbance absence (reference conditions)
- To compare site conditions with the aforementioned
- To enable detection of human disturbance effects
- To have smaller variability of biological parameter within the same type than between types

System A for rivers (WFD)

University of Thessaloniki

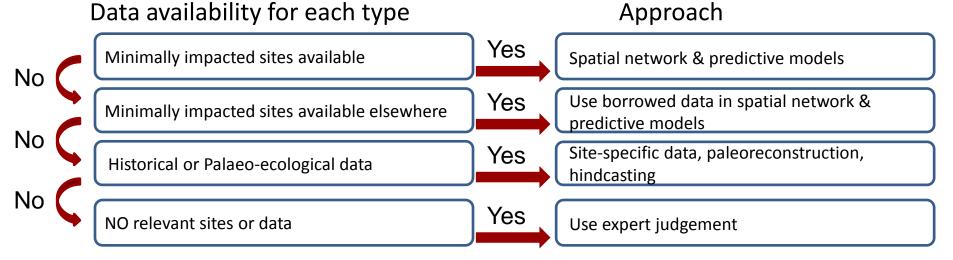
Fixed Typology	Descriptors	
Ecoregion (e.g. T⁰C, Pluviosity+Altitude)	Ecoregions shown on Map A in Annex XI	
Туре	Altitude typology	
	high > 800 m	
	mid-altitude 200 to 800 m	
	lowland < 200 m	
	Size typology based on catchment area	
	small 10 – 100 km2	
	medium > 100 to 1.000 km2	
	large > 1.000 to 10.000 km2	
	very large > 10.000 km2	
	Geology	
	calcareous	
	siliceous	
	organic	
e	River Water Quality	0
ie isity of		9

1	Iberic – Macaronesian region
2	Pyrenees
3	Italy, Corsica & Malta
4	Alps
5	Dinaric Western Balkan
6	Hellenic Western Balkan
7	Eastern Balkan
8	Western highlands
9	Central highlands
10	The Carpathians
11	Hungarian lowlands
12	Pontic province
13	Western plains
14	Central plains
15	Baltic province
16	Eastern plains
17	Ireland & Northern Ireland
18	Great Britain
19	Iceland
20	Borealic uplands
21	Tundra
22	Fenno-Scandian shield
23	Taiga
24	The Caucasus
25	Caspic depression

River Water Quality School of Biology

System B for rivers (WFD)

Alternative Characterisation	Physical and chemical factors that determine the characteristics of the river or part of the river and hence the biological population structure and composition
Obligatory factors	Altitude Latitude Longitude Geology Size of the catchment area
Optional factors	Distance from river sourcesEnergy of flow (function of flow and slope)Mean water widthMean water depthMean water slopeForm and shape of main river bedRiver discharge (flow) categoryValley shapeTransport of solidsAcid neutralising capacityMean substratum compositionChlorideAir temperature rangeMean air temperaturePrecipitation



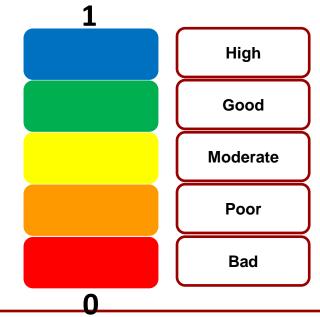
River Water Quality

Reference Conditions

- Ecological status is defined as deviation from the reference conditions which form the basis of ecological classification
- The undisturbed (natural) status serves as reference (identification of reference biological communities for each <u>type</u> of water body)

How are they determined?

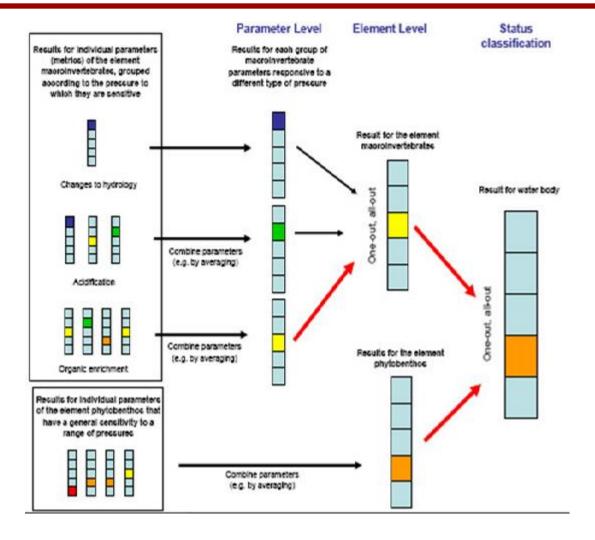
University of


Determination of reference conditions according to data availability.

Based on Heiskanen et al. 2004

River Water Quality

Classification of Ecological Status


- Ecological Quality Ratio (EQR): Ratio of Observed Parameter Value to Expected Parameter Value
- 5 categories-levels for classification of quality status
- Ecological status represented by the lower of the EQR-values (biological, physical-chemical & hydromorphological monitoring results) for the assessed
 1
 quality elements (One out →
 All out principle)
 - Intercalibration is necessary to ensure comparability on the biological elements.
 - Important to select indicators for the biological quality elements ensuring practicability and cost-effectiveness)

Classification of Ecological Status

One out – All out

University of

Thessaloniki

River Water Quality

Presentation of monitoring results

- Results of ecological status are presented in maps for each River Basin District, colour coded according to the 5 class system
- Results of chemical status are good when water complies with all environmental quality standards (Annex IX., Art. 16, & national legislation) or if it doesn't, it is categorized as Failing to achieve good status

Challenges

- Assess existent information, resources and tools
- Remodel of existing networks
- Decide on most
 - cost-effective
 - practicable
 - best environmental solutions

Whom the guidance for monitoring (Working group 2.7) concerns?

- Undertaking the monitoring programmes yourself;
- Leading and managing experts undertaking the monitoring;
- Using the results of the monitoring for taking part in the policy making process; or,
- Reporting on the results of monitoring to the European Union as required by the Directive.

What one can find in this Guidance document?

• 1.3.1 Common understanding of concepts and terms

➤The term 'supporting'

≻The term 'water body'

>The concepts of risk, precision and confidence;

➤Monitoring of wetlands

>The 3 types of monitoring of surface waters;

- 1.3.2 Guidance on the selection of Quality Elements
- 1.3.3 Best Practices and Tool Box
- 1.3.4 Best practice examples of current national monitoring

University of

1.4 Guidance on monitoring – a framework approach

18

What one cannot find in this Guidance document?

The Guidance Document focuses on the monitoring requirements of the Directive. The Guidance does not focus on:

- Determination of reference conditions;
- Development of assessment and classification Systems and intercallibration systems;
- Monitoring wetlands; or,
- Data analysis and reporting.

RIVERS

River Water Quality School of Biology

Key features of each biological quality element (QE) for rivers

Aspect/feature	Benthic invertebrates	Macrophytes	Benthic Algae	Fish	Phytoplankton
Measured parameters indicative of QE	Composition, abundance diversity, and presence of sensitive taxa.	Composition and abundance , and presence of sensitive taxa	and presence of sensitive taxa	Composition and abundance, sensitive species diversity, age structure,	Composition, abundance and planktonic blooms, and presence of sensitive taxa
Supportive/interpretative parameters measured or sampled at the same time	Morphology, physico-chemical parameters (e.g. Temp/DO, nutrients, pH etc), river flow, substrate/habitat sampled	Morphology, river flow, depth, transparency	Si), TOC, pH, hydrological regime, light conditions	Substrate/habitat sampled, river size (depth/width), river flow, temp, oxygen	Chlorophyll <i>a,</i> flow, physico- chemical parameters (e.g. temp, DO, N, P, Si)
Pressures to which QE responds	Mainly developed to detect organic pollution or acidity, can be modified to detect full range of impacts.	including hydropower effects.	detect eutrophication, acidification, river dynamics.	Can be used to detect habitat and morphological changes, acidification and eutrophication.	Used as indicator of productivity/eutrophication.
Mobility of QE	Low, although unfavourable conditions may cause drift	Low. Generally fixed position.		High. Tendency to avoid undesirable conditions (e.g. low oxygen conditions).	High. Drifting with river water
Level and sources of variability of QE	High seasonal variation in community structure. Influenced by climatic events e.g. rainfall/flooding	High seasonal variation in community structure and abundance.	by light and nutrient availability	High seasonal variation in community structure (e.g. spawning/migration) and abundance. High interannual variation due to age structure.	High inter and intra-seasonal variation in community structure and biomass. Influenced by climatic events, light, nutrient availability, stability and residence time
Presence in rivers	Abundant	Abundant if suitable habitat. Limited in fast flowing streams.	Abundant if suitable habitat. Limited in large, deep rivers with poor habitat	Abundant	Generally low. May be abundant if conditions conducive to growth
Sampling methodology	ISO 8265, 7828, 9391 (surber sampler, handnet, grab)	CEN –standard under development	CEN –standard under development	Depending on habitats – nets, electrofisher	Integrated sample (3-4m), depth sampler
Habitats sampled	Riffle, pool (rocks/logs), edge (littoral), macrophytes,	Littoral, deposition areas (eg pools)	Benthic substrate/artificial substrate	All habitats	Water column
Typical sampling frequency	6 monthly/Annual	Annual/6 monthly	Quarterly/6 monthly	Annual	Monthly/Quarterly
Time of year of sampling	Summer and winter. Spring and autumn in Scandinavia.	Mid to late summer.	All seasons/summer and winter. Summer & autumn in Nordic countries.	Varied	Should cover all seasons. Only during ice free periods in Nordic countries.
Typical sample size	Variable depending on sampling methodology and habitat		Variable, may be standardised		Single integrated sample
Ease of sampling	Relatively simple. Difficulties in deep or fast flowing rivers.	5	Observations and % cover	equipment (e.g. electrofisher).	Simple using integrated hosepipe (or grab sample in shallow water)
Laboratory or field measurement	Field collection and sorting. Microscopic identification in laboratory	Field collection and identification	identification in laboratory		Field collection, laboratory preparation followed by microscopic identification
Ease and level of Identification	Relatively simple to Genus. Requires expert identification to species level for some (e.g. chironomids). May be damaged during sampling/preservation	Simple to identify to species, except some genera (e.g. potamogeton)		Simple to identify to species, except some cyprinids which require expert knowledge	Requires expert identification of majority of genera and species. Some small unicellular species (e.g. unicellular greens) difficult to identify unless under high power microscopy

University of

Key features of each biological quality element (QE) for rivers

	· · · · · · · · · · · · · · · · · · ·				
Aspect/feature	Benthic invertebrates	Macrophytes	Benthic Algae	Fish	Phytoplankton
Nature of reference for comparison of quality/samples/stations	Austria, Denmark, Sweden, Norway	European institutions	No	France.	No
Methodology consistent across EU?	No	No	No	No	No
Current use in biological monitoring or classification in EU	Finland, France, Spain, Germany, Italy, Ireland, Luxembourg, Portugal Netherlands, Sweden, Norway and the UK	Austria, Belgium, France, Germany, Ireland, Netherlands and the UK	Austria, Belgium, France, Germany, Ireland, Norway, Sweden, Finland, Spain, Netherlands and the UK	Austria, France, Belgium, Ireland, Norway and the UK	None
Current use of biotic indices/scores	(IBGN), Germany (Saprobic), Austria (Saprobic), Spain (SBMWP), Belgium (BBI), Netherlands (K-value)		Yes. Sweden (developing). Norway and Germany – Index of occurrence of sensitive taxa		No
Existing monitoring system meets requirements of WFD?			No		No
SO/CEN standards	ISO 9391:1993 ISO 8265: 1988	CEN-Standard under development	CEN-Standard under development	CEN-Standard under development	
Applicability to rivers	High	Moderate	High	High	Low-Moderate
Main advantages	 Currently most common biological indicator used for ecological classification. Existing classification systems in place Possibility of adapting existing systems to incorporate requirements of WFD. Less variable than physico- chemical elements 	 Easy to sample and identify. Low interannual variability 	 Easy to sample (in shallow water) Some existing methods developed Less variable than physico-chemical elements Responds quickly to changes in environmental and anthropogenic conditions Possibility of adapting existing systems to incorporate requirements of WFD. 	 Existing river classification systems in place Possibility of adapting existing classification systems to incorporate requirements of WFD. 	 Easy to sample May be relevant in rivers where residence times enough to sustain growth (e.g. lowland rivers, upstream of impoundments)

University of

Key features of each biological quality element (QE) for rivers

Aspect/feature	Benthic invertebrates	Macrophytes	Benthic Algae	Fish	Phytoplankton
Main disadvantages	 Methods require adaptation to meet requirements of WFD Some require specialist expertise to identify to species High substrate-related spatial variability and high temporal variability due to hatching of insects and variation of water flow Time consuming and expensive Presence of exotic species in some EU rivers. 	 Not commonly used in EU Lack of information for comparison to reference Methodology needs to be adapted to incorporate requirements of WFD 	 Not commonly used in EU Lack in information for comparison to reference Methodology needs to be adapted to incorporate requirements of WFD. Difficult to sample in deep rivers High substrate related spatial variability High seasonal variation Requires specialist expertise for species identification 	Horizontal and vertical distribution patters (differs between species)	 Not routinely used in river quality assessment in EU Not generally present in flowing rivers High variability requires frequent sampling Difficult to establish dose- response relationships due to flow-related variability.
Conclusions/ Recommendations	This QE is best developed in EU and hence it is recommended as one of the key elements for monitoring especially for organic pollution.	Under certain hydrological conditions this QE is not suitable. However, in good conditions it can give a robust assessment.	Recommended, particularly for assessment of trophic status.		Only recommended for large, slow flowing rivers.

University of

Key features of each hydromorphological quality elements for rivers

	a				••••••••••••••••••••••••••••••••••••••	
Aspect/feature					Structure and substrate	
		groundwater bodies		variation	of the river bed	riparian zone
	Historical flows, modelled		No and type of barrier	River cross section, flow	Cross section, particle	Length, width, species
indicative of QE		surface water discharge	and associated provision			present, continuity,
	current velocity		for fish passage		location of CWD	ground cover
Pressures to which QE	Used to detect impact of	Provides information on	Used to detect impact on	Used to detect impact on	Determines impact on	Influences structure of
responds	water storage,	surface-groundwater	upstream migration of	biota from changing flows	biota from changing	banks, provides habitat
	abstraction and	relationship	fish	and habitat availability	habitat availability	and shading for biota,
	discharge on biota,	-		_	_	filters diffuse runoff
	hydropower regulation					
Level and sources of	Highly variable	Moderate variability	Low variability. Based on	Moderate variability.	Variable depending on	Variable. Possibility of
variability of QE	depending on	,	presence/modification of	Influenced by	particle size and flow	physical clearing,
	geographical and climatic		infrastructure	hydropower regulation	(e.g. gravel/sand	accessibility from
	conditions. Variations			,		livestock, erosion etc
	reduced as response to				prevalent following high	- ,
	barriers				flows)	
Sampling methodology	ISO standard for current	No common	No common	No common		No common
			methodology	methodology		methodology
	methodology for	07			0.	
	dynamics					
Typical sampling	In-situ, real time	6 monthly, depending on	Every 5-6 years	Annual	Annual	Annual
frequency		climatology and geology				
Time of year of	All year	Winter and summer	varied	varied	varied	varied
sampling	-					
Typical "sample" size	Common standard for No	Not defined	Entire reach	No common agreement	No common agreement	50m in headwaters 100m
or survey area	of monitoring points in					in middle and lower
	cross sections developed					reaches
			Simple. Survey to	Can be simple using		Simple following minimal
/measurements	gauging stations in small	groundwater height	determine location and	observation and	training	training. Collection and
	rivers. Greater effort	(boreholes) and river flow		measurement or detailed		laboratory identification
	required for large rivers.		abstraction sites/volumes	using laser survey		of species may be
				equipment		required
	No	No	No	No	No	No
comparison of						
results/quality/stations						
e.g. reference						
conditions/best quality				ļ		
	No	No	No	No	No	No
consistent across EU?			-		_	
Current use in	Yes. Belgium, France,	Yes. Belgium, UK	Yes. Belgium, Germany,	Yes. Belgium, Germany,	Yes. Belgium, Germany,	Yes. Belgium, Germany,
	Sweden, UK, Finland and		France	France, UK and Norway	France, UK and Norway	France, Italy , UK
	Norway					
classification in EU						
Existing monitoring						
systems meet						
requirements of WFD?						

Aristotle University of Thessaloniki

Key features of each hydromorphological quality elements for rivers

		Connection to groundwater bodies		•	Structure and substrate of the river bed	Structure of the riparian zone
	No	No	No	No	No	No
systems meet						
requirements of WFD?						
		No	No	No	No	No
	CEN?TC 318 under					
	development					
Applicability to rivers	High	High	High	High	High	High
Main Advantages	 Possibility of adapting 	•	 Methodology needs to 	 Methodology needs to 	•	•
	existing systems to		be developed to	be developed to		
	incorporate		incorporate	incorporate		
	requirements of WFD.		requirements of WFD.	requirements of WFD.		
Main disadvantages	 Not commonly used 	 Not commonly used 	 Not commonly used 	 Not commonly used 	 Not commonly used 	 Not commonly used
Conclusions/	Simple to monitor.	Can not be commonly	Very relevant for some	Not applicable for all	Essential for interpreting	Applicability depends on
recommendations	Key supporting	used. Only relevant	species.	rivers such as rivers with	the biological quality	the shape, size etc. of
	parameter for	under certain conditions	One extensive survey is	high natural variation.	elements and possibility	the riparian zone.
	interpretation	when groundwater plays	sufficient – supplied	Methodology needs	of sediment accumulation	Methodology must be
		a major role in water	when necessary	further elaboration		further elaborated
		balance. Methodology				
		must be elaborated.				

Key features of each chemical and physico-chemical quality element for rivers

Aspect/feature	Thermal Conditions	Oxygenation Conditions	Salinity	Acidification Status	Nutrients
Measured parameters indicative of QE	Temperature	Dissolved oxygen (mg/L and % sat)	Conductivity, ca concentration		TP, TN, SRP, $NO_3 + NO_2$, NH_4
	industrial discharges	Organic pollution, industrial discharges	discharges		industrial discharges
variability of QE		in fast flowing rivers.	influenced by water flow		Variable depending on landuse, buffer capacity, temp/DO, presence of binding metals etc
considerations	Seasonal stratification and mixing (in deep water), cold water releases		Seasonal stratification and mixing in deep waters	Seasonal variations	Sources (diffuse/point), sufficient speciation to enable source discrimination
methodology	In-situ using submersible probe	In-situ using submersible probe, or sample collection and Winklers titration	probe	• • •	Sample collection in field followed by laboratory analysis
frequency	Fortnightly-monthly	Fortnightly-monthly			Fortnightly-monthly. More frequently during flooding.
Time of year of sampling	All seasons.	All seasons			All seasons. Particularly following inflow events. Not during ice cover.
	Single measurement or water column profile	Single measurement or water column profile	Single measurement	Single measurement	Single sample, or profile in deep waters
	Simple using in-situ submersible probe	Simple using in-situ submersible probe, or sample collection followed by Winklers titration	submersible probe	collection followed by laboratory analysis	Simple. Surface water sample or profile using depth sampler (e.g. van dorn)
consistent across EU?	No	No			No
monitoring programmes or for classification in EU	All	All		All	All
Existing monitoring systems meet requirements of WFD?	Yes	Yes	Yes	Yes	Yes
Existing classification system meets requirements of WFD?					No
	Yes	Yes	Yes	Yes	Yes
,	Moderate. Stratification may be present in deep, slow flowing rivers. Can help detect thermal pollution.	Moderate. Oxygen depletion may be present in deep, slow flowing rivers or upstream of impoundments	High	Low. Problem in stagnant waters.	High
1				1	L

University of

Key features of each chemical and physico-chemical quality element for rivers

Aspect/feature	Thermal Conditions	Oxygenation Conditions	Salinity	Acidification Status	Nutrients
Main advantages	 Simple to sample in-situ Able to implement standard methodology 	 Simple to sample in-situ Able to implement standard methodology 	 Simple to sample in-situ Able to implement standard methodology 	 Simple to sample in-situ Able to implement standard methodology 	 Can provide information as to pollutant sources Simple to sample in-situ Able to implement standard methodology
Main disadvantages	Does not provide long- term indication	 Diel variations may require frequent monitoring Does not provide long- term indication 	Does not provide long- term indication	 Does not provide long- term indication May require intensive monitoring following rainfall events 	 Does not provide long- term indication May require intensive monitoring following rainfall events
	Basic determinand for assessment of biocenosis.	Basic determinand for assessment of biocenosis.		Recommended in rivers with risk of acidification	Very important indicator for human activity/ eutrophication. Total N and P, nitrate and orthophosphate should be monitored as a minimum. Ammonia monitored where concentrations are expected to be problematic e.g. exceedences of limit values over a specific limit.

Thessaloniki

River Water Quality School of Biology

References

Chave, P. A. (2001) The Eu Water Framework Directive: An Introduction. IWA Publishing, London. ISBN 1900222124 Heiskanen, A.-S., W. Van de Bund, A.C. Cardoso & P. Nõges (2004): Towards good ecological status of surface waters in Europe - Interpretation and harmonisation of the concept". Water Science and Technology 49 (7), 169-177. Water Framework Directive (2000/60/EC) Priority Substances Decision (2455/2001/EC) Directive containing measures included in the programme of measures (annex VI, Part A) Bathing Water Directive (76/160/EEC) Birds Directive (79/409/EEC) amended in Directive (97/49/EC) Drinking Water Directive (80/778/EEC as amended by Directive 98/83/EEC) Environment Impact Assessment Directive (85/337/EEC) Habitats Directive (92/43/EEC) Integrated Pollution Prevention Control Directive (96/61/EC), amended by Directive (98/15/EC) Major Accidents Directive (96/82/EC) Nitrates Directive (91/676/EEC) Plant Protection Products Directive (91/1414/EEC) amended by Directive (98/47/EEC) Sewage Sludge Directive (86/278/EEC) Urban Wastewater Treatment Directive (91/271/EEC), amended in directive (98/47/EC) Directives that establish emission limit values and environmental quality standards (Annex IX) Cadium Discharge Directive (83/513/EEC) Dangerous Substances Directive (76/464/EEC), Dangerous Substance Discharges Directive (86/280/EEC) Hexachlorocyclohexane Discharge Directive (84/491/EEC) Mercury Directive (84/156/EEC) Mercury Discharges Directive (82/176/EEC) Other related directives Directive (79/869/EEC) concerning the methods of measurement and frequencies of sampling and analysis of surface water intended for the abstraction of drinking water Exchange of Information Directive (77/795/EEC) Fish Life Directive (78/659/EEC) Groundwater Directive (80/68/EEC), Shellfish Waters Directive (79/923/EEC), amended by Directive (91/692/EEC) Surface Water Abstraction Directive (75/440/EEC) **Council Decisions and regulations** Technical guidance document in support of Commission Directive (93/67/EEC)

University of

End of Section 1

Processing: Latinopoulos Dionissis

Thessaloniki, Thessaloniki, Winter Semester 2013-2014

