

River Water Quality

Section **3a**: Anthropogenic Influence on Running water Hydromorphology & Water Quality Prof. Maria Lazaridou School of Biology

License

- The educational material subjects to Creative Commons licensing.
- For the educational material, like images, that subjects to other form of licensing, the license is explicitly referred.

University of

River Water Quality School of Biology

Funding

- This educational material has been developed as part of the educational work of the teacher.
- The project "Open Academic Courses at Aristotle University of Thessaloniki" has only fund the remodeling of educational material.
- The project is implemented under the Operational Program "Education and Lifelong Learning" and cofunded by the European Union (European Social Fund) and national resources.

River Water Quality

School of Biology

Anthropogenic Influence on Running water Hydromorphology & Water Quality

Types & Sources of Pollution – Organic Pollution

Section Contents

- 1. Introduction
- 2. Nutrients
- 3. Sources of Organic Pollution
- 4. Nature & Composition of pollutants
- 5. Fate of organic material released to freshwater
- 6. Pathogens
- 7. Hormone Pollution

Section Goals

 Show the different types of pollution, the effects of toxic chemicals and how planktic organisms play a major role in pollutant fluxes and fate of freshwater ecosystems as well as the use of biomarkers and finally how dams influence the river continuum concept.

Section Outcomes

 A student should consider how anthropogenic stresses may influence or/and alter the synthesis of a biocommunity or integrity at tissue or cellular level of an organism and to understand how contaminant fluxes and transfer is done through freshwater ecosystems plankton

Introduction

- Running waters are the most impacted ecosystems due to anthropogenic influence (settlement & activities).
- Most activities affect river ecosystems by interfering with Discharge, Salinity, Conductivity, TDS, TSS
- Pollution is "the direct or indirect introduction of substances, vibrations, heat or noise into the air, water or land which may be harmful to human health or the quality of the environment, as a result of human activity" (European Community Water Policy 1996)

Introduction

Eutrophication

can be natural from rock weathering and soils or human caused:

 Accumulation of nutrients in water and associated sediments, which lead to an excessive growth of algae (phytoplankton & periphyton) & higher plants (macrophytes) with multiple effects. The source of nutrients may be a variety of point & diffuse sources.

Effects:

- ✓ increase in plant & animal biomass, in growth of rooted plants
- ✓ increase in turbidity of water & in rate of sedimentation,
- ✓ development of anoxic conditions,
- ✓ decrease in species diversity,
- ✓ change in dominant biota & increase in the frequency of algal blooms
 - Anaerobic bacteria under anoxic conditions produce hydrogen sulphide (H₂S), thioalcolohs (RSH) & ammonia (NH₃)

Introduction

Constituents, Sources & effects in a water system that can derive of a Sewage from a City Sewage System (Manahan, 1994)

Constituent	Potential Sources	Effects in Water
Oxygen-demanding substances	Mostly organic materials, particularly human faeces	Consume dissolved oxygen
Refractory organics	Industrial wastes, household products	Toxic to aquatic life
Viruses	Human wastes	Cause disease major deterrent to sewage recycle through water systems
Detergents	Household detergents	Aesthetics, prevent grease and oil removal, toxic to aquatic life
Phosphates	Detergents, human waste	Algal nutrients
Grease and oil	Cooking, food processing, industrial wastes	Aesthetics, harmful to some aquatic life
Salts	Human wastes, water softeners, industrial wastes	Increase water salinity
Heavy metals	Industrial wastes, chemical laboratories	Toxicity
Chelating agents	Some detergents, industrial wastes	Heavy metal ion very soluble in water and is transported around the system
Solids	All sources	Aesthetics, harmful to aquatic life

Aristotle University of

Thessalonik

River Water Quality School of Biology

Nutrients

- Even though necessary for healthy waters, in high levels cause a variety of problems
- Nutrient pollution (sewage & fertilizers) causes eutrophication => reducing oxygen content =>growth of anaerobic decomposers
- The chemistry of decomposition is different when it occurs in water containing oxygen & in water characterised by anoxic conditions
- In anaerobic Decomposition, H₂S & NH₃ produce poisonous gases in high concentrations. CH₄ & CO₂ gases leave water & pass into the air
- Drinking water high in nutrients (NO₃⁻) get converted into toxic nitrites (reduces blood capacity to carry O₂)
- Phosphorus introduced to aquatic systems by detergents & fertilizers can rise, may cause aquatic plants grow rapidly, then their death & then productivity is limited when PO₄⁻ is used up

University of

Sources of Organic Pollution

<u>Sewage & domestic wastes:</u> sewage effluents unprocessed have BOD about 300-400 mg/L whereas after treatment 20-60mg/L. The amount of oxygen required to break down the faeces and other organic waste varies and has risen progressively with changes in life style and increasing affluence

<u>Urban run-off</u>: is rich in organic matter including faeces & vegetable matter. Has rapid flushing & run-off due to the nature of the urban substrate & provides the neighbouring aquatic systems with water high in nutrients (BOD = hundreds up to thousands mg/L depending on treatment)

<u>Industries:</u> manufacturing textiles, leather goods & paper involve the processing of organic material along with chemical agents & large amounts of water => produce much effluent containing high concentration of dissolved and particulate organic matter rich in carbohydrates and protein

Sources of Organic Pollution

- <u>Agriculture</u>: a major source of organic pollution from plant cultivation and farming. Slurry from intensive livestock farming in untreated can be 100 times more polluting than untreated sewage.
 Fertilizers & detergents wash-off along with inadequately stored fodder crops can run-off and enter surrounding watercourses
- <u>Food processing & manufacture</u>: abattoirs, dairies, canneries, breweries produce large amounts of organic waste with increased BOD

Nature & Composition of pollutants

- Organic effluent typically contains both particulate & soluble organic & inorganic material
- Sewage & other organic contaminants of freshwater are characterised by high concentrations of largely organic particulate material & large amounts of dissolved organic and inorganic material.
- The particulate & dissolved organic component of sewage consists of around 30% lipid, 25% protein, 10% lignin & cellulose & smaller amounts of amino acid, starch & glycoprotein's

Fate of organic material released to freshwater

- Organic component of sewage increases the activity of aerobic decomposing organisms. High BOD results in deoxygenation of the water column & surrounding sediments
- Organisms can increase their abundance by several orders of magnitude in response to inputs of sewage
- In waters receiving severe organic pollution, the benthic community (mostly bacteria) grows & may form a slime (mucilage) over the substrate (sewage fungus)
- In Aerobic conditions the organic component through the pyruvic acid is broken down to NH₃, CO₂ & H₂O.
- Proteins are catabolised by hydrolysis to amino-acids which in turn is oxidized to pyruvic acid & NH₃

Fate of organic material released to freshwater

- When O₂ is used up, aerobic decomposers get replaced by anaerobic ones. Anaerobic bacteria break down amino-acids using different metabolic ways & produce additionally to NH₃, CO₂ & H₂O, acetic acid, H₂S & CH₄
- The fate of the ammonia produced by the breakdown of organic pollutants largely depends on the water oxygen level.
- Aerobic bacteria decompose NH₃ to NO₃⁻ & NO₂⁻, whereas in anaerobic conditions NH₃ accumulates. Some can transform NO₃⁻ to N₂ releasing oxygen.
- P₂ from organic material is broken down to PO₄⁻ by microbial action
- Through organic waste, water gets enriched with Ca²⁺, Mg²⁺, K⁺, Cl⁻

University of

Pathogens

- Freshwater bodies polluted by faecal discharges from man, pets, farm animals & wild animals may transport a variety of pathogens such as bacteria, viruses & protozoans. Waterborne diseases account for millions of deaths annually.
- Bacterial counts (total & faecal coliforms) are expressed in colonies/100 ml. Upstream & downstream water counts differ. When a water body receives untreated wastes, the count could be a million times bigger.
- Potable water produces 1/100ml, & suitable for swim is 200/100ml (EPA). In rivers relatively free of faecal discharges, total faecal counts (colonies) are less than 100/100 ml

Hormone Pollution

- Source of pollution that cannot undergo treatment
- The source of the hormone (mostly steroids) is thought to be the urine of people under treatment or women taking contraceptive pills and domestic detergents
- Such substances contain compounds that imitate the effects of otherwise naturally produced hormones

(e.g. estradiol made male fish to produce egg yolk proteins, normally found in female, in trout & eels in Britain & in France)

